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Note 

Shift of the Coordinate Origin in Calculating 
Resonances by Dilatation Transformation 

Resonant scattering is characterized by the energy E and the width r of the 
resonance. Recently, Simon [ 1 ] has shown, on the basis of an important theorem 
of Baslev and Combes [2], that E and r may be associated with the complex 
eigenvalues 

W= E-ir12, (1) 

of a certain analytically continued Hamiltonian operator Ho = H(r‘e”). This 
operator is obtained from the ordinary self-adjoint Hamiltonian H(t) = T(t) + V(F) 
when the position vectors i are rotated upward into the complex coordinate plane: 

i-b &de, 9 >O, real. (2) 

In this way, E and r can be simply obtained by solving a non-Hermitian eigenvalue 
problem. 

A detailed mathematical justification of the dilatation-transformation method is 
given in [ 1,2] for the limited class of so-called dilatation analytic potentials. 
However, some authors [3-53 have calculated E and r successfully for potentials 
that do not belong to this class. 

For example, Yaris et al. [S] use the dilatation-transformation method to iden- 
tify resonances in the cubic anharmonic oscillator 

H =p; + x2/4 - 1x3, pX = -idJdx, I, > 0. (3) 

In this case, the eigenvalues W of the rotated Hamiltonian H, are computed by way 
of an expansion in a properly chosen basis set and then solving the truncated eigen- 
value equation exactly [4]. Owing to the finite-basis-set approximation, the 
position of a resonance eigenvalue is not completely independent of 0, as it should 
be if the eigenvalue equation were exactly solved. What is usually done is to repeat 
the diagonalization for different values of 8 to find that value of 8 for which W(e) is 
most nearly stable [S, 61. The accuracy of’the computed resonances is estimated by 
increasing the size of the truncated basis set. Besides, the rate of convergence of the 
resonances as a function of the size of the truncated basis set depends on the basis 
set itself. Therefore, it is of great importance to choose it carefully. 

This note will show how to find a good basis set to identify resonances in 
problems which do not possess a center of inversion. To simplify the discussion the 
Hamiltonian (3) will be used as an illustrative example. 
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Yaris et al. [S] used the set of eigenfunctions of p; + k2x2/4 in order to 
diagonalize H and found the best value of k. But since the potential function is not 
symmetric about x = 0, we are allowed to use a shifted harmonic oscillator basis set. 
This is obtained by means of the following transformation: 

z = 2 1J2axeiH f 6, (4) 

where a, b, 8 are real and 8 > 0. Obviously, a plays the role of k and has the usual 
meaning. But the new parameter b takes into account the fact that the potential in 
(3) does not have a center of inversion (that is to say: the potential is not an even 
function of the coordinate). 

The transformation (4) leads to a new Hamiltonian Hoc*, 

Hate = H(x(z)) = $a’e ~ 2’epz + a ~ 2($e2io - 3A’ce3”) z2 - i’a ~ 3e3i’z3 

+ a - 1( ce2i0 _ 31’c2e3’B) z + ;c2e2i8 _ 21~3~38, (5) 

where c = -b/a and 2’ = 23/212. 
The eigenvalues of Hnce are obtained by expanding it in a truncated basis set of 

normalized eigenfunctions { #,,} of H, = pi + z2 and then solving the matrix eigen- 
value equation 

(Kc0 - w,,(a, G 0) I} C, = 0, (6) 

where Hate and I are Nx N matrices corresponding to the Hamiltonian and to the 
identity operator, respectively. C, is an N-dimensional row vector. 

If the real parameters a and c are properly chosen, the rate of convergence of the 
eigenvalues W, as functions of the size N of the basis set increases. This has been 
proved in the case of real scaling calculations [7]. The aforesaid conclusion also 
holds when a complex scaling calculation is performed. 

It only remains to obtain proper values for a and c. The parameter 8 will be 
determined according to the above-mentioned criterion [S, 61. Since the exact 
eigenvalues W, are not dependent on a and c, it is appropriate to choose those 
values of a and c that make W,,(a, c, 0) stable. But this procedure leads to a large 
amount of computation, a task to be avoided. 

Acceptable values for a and c are the stationary points of &fn(a, c) = 
(4, IH,d I+,>, 

&(a, c) = (n + +)(+a’ + ;a-‘- 3ae2c1’) + +c’- A’c3; 

that is to say, the roots of 

a4 - 62’~ - 1 = 0, 

-3(n++)a-21’+c-3A’c2=0. 

(7) 

Pa) 

@b) 

If ;1’ = 0, then c = 0. This choice is reasonable since &(a, c) equals W,(a, c, 0) when 
0 = 0 and N = 1 (N is the matrix dimension in (6)). 
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The matrix elements in the expansion of Hats in the chosen basis set {qSn} are 
easily shown to be: 

(H,,),=i(i+f)a~2(~a4~~2i’+f~2i*-3j’c~3i0)+fc2~2ie-~‘c3~3i0}~i,j 

+ !-(j+l)1/2(j+2)1/2a-2 - ~a4e~2ie+~e2ie-3ci.fe3i0 
( ) 

di+2,j 

i+ 1 

{( > 

‘I2 
+ - 

2 a- 1(ce2i* -3c*‘e3”)-3 (~)3’2a-3~re3io}~i+l,j 

Ci+ 1)(i+2)(i+3), 
8 (9) 

To solve the eigenvalue problem (6) we use a modified LR algorithm [8] after per- 
forming a similarity reduction of Hate to a Hessenberg form [9]. All calculations 
are performed using the values of a and c that result from (8) when n =O. This 
choice assures the highest convergence rates for the low-lying resonances. 

The energies and the widths of the resonances of the model (3) (with 1=0.03) 
are shown in Table I, where two different calculations are compared: (i) when a, b 
are solutions of (8) and (ii) when a= 0.8 and b = 0, which correspond to the 
calculation in Ref. [S] with k = 0.4. In both cases 8 = 0.2 is used. The introduction 

TABLE I 

Resonances in H = p’, + x2/4 - Ix3 when I = 0.03 

N n Re Wna -1m W,a Re Wnb -1m Wnb 

0 
1 

10 2 
3 
4 

0 
1 

20 2 
3 
4 

0 
1 

30 2 
3 
4 

0.489196055 9.5 x lo-’ 0.489217619 
1.422932675 7.6x 1O-5 1.423124774 
2.251292943 1.1 x 1o-2 2.249105930 
2.959113806 0.12 2.919107389 
3.739108908 0.39 3.461815929 

0.489194714 5.52 x 1O-8 
1.4229223 13 4.09 x 10-j 
2.250200574 7.43 x 10-X 
2.923853339 0.139 
3.619868351 0.462 

0.489194720 5.70x 10-g 
1.422922404 4.08 x 1O-5 
2.250203205 7.40x 10-X 
2.923358810 0.139 
3.616822098 0.468 

0.489194714 5.54 x 10-a 
1.422922458 4.09x 10-5 
2.250199666 7.41 x 10 -3 
2.923356344 0.139 
3.618976541 0.469 

0.489194714 5.54x 10-S 
0.422922457 4.09x 10-5 
2.250199673 7.41 x 10 -3 
2.923359372 0.139 
3.618942705 0.469 

1.8 x 1O-5 
3.0x 10-5 
5.5 x 1o-3 

0.14 
0.43 

a a=0.9821258, c=O.1367116, 0 =0.2. 
b a = 0.8, c = 0, f? = 0.2. 
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of the parameter b that takes into account the potential symmetry improves the rate 
of convergence markedly for both the real and imaginary part of the two lowest 
resonances (see Table I). All the calculations show that the convergence rate 
depends more strongly on c rather than on a. This confirms the importance of the 
parameter c. 

The results obtained in this note using the simple (though nontrivial) one-dimen- 
sional quantum-mechanical model (3) confirm that the introduction of adjustable 
parameters that change the coordinate origin increases the convergence rates of the 
eigenvalues of a finite-dimensional vector-space eigenvalue equation like (6) in 
those cases where there is not a center of inversion. This conclusion applies to 
many-dimensional models too, as suggested by real scaling calculations performed 
earlier [ 71. 
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