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Note

Shift of the Coordinate Origin in Calculating
Resonances by Dilatation Transformation

Resonant scattering is characterized by the energy E and the width I' of the
resonance. Recently, Simon [1] has shown, on the basis of an important theorem
of Baslev and Combes [2], that E and I" may be associated with the complex
eigenvalues

W=E-il/2, (1

of a certain analytically continued Hamiltonian operator H,= H(fe®). This
operator is obtained from the ordinary self-adjoint Hamiltonian H(F) = T(F) + V()
when the position vectors 7 are rotated upward into the complex coordinate plane:

F-re®,  6>0, real (2)

In this way, E and I can be simply obtained by solving a non-Hermitian eigenvalue
problem.

A detailed mathematical justification of the dilatation-transformation method is
given in [1,2] for the limited class of so-called dilatation analytic potentials.
However, some authors [3-5] have calculated E and I” successfully for potentials
that do not belong to this class.

For example, Yaris er al. [5] use the dilatation—transformation method to iden-
tify resonances in the cubic anharmonic oscillator

H=p2+x*4—ix’,  p,=—id/dx, 1>0. 3)

In this case, the eigenvalues W of the rotated Hamiltonian H, are computed by way
of an expansion in a properly chosen basis set and then solving the truncated eigen-
value equation exactly [4]. Owing to the finite-basis-set approximation, the
position of a resonance eigenvalue is not completely independent of 8, as it should
be if the eigenvalue equation were exactly solved. What is usually done is to repeat
the diagonalization for different values of 6 to find that value of 6 for which W(#) is
most nearly stable [5, 6]. The accuracy of'the computed resonances is estimated by
increasing the size of the truncated basis set. Besides, the rate of convergence of the
resonances as a function of the size of the truncated basis set depends on the basis
set itself. Therefore, it is of great importance to choose it carefully.

This note will show how to find a good basis set to identify resonances in
problems which do not possess a center of inversion. To simplify the discussion the
Hamiltonian (3) will be used as an illustrative example.
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Yaris et al. [5] used the set of eigenfunctions of p2+k’x?/4 in order to
diagonalize H and found the best value of k. But since the potential function is not
symmetric about x = 0, we are allowed to use a shifted harmonic oscillator basis set.
This is obtained by means of the following transformation:

z=2Y2gxe” + b, 4)

where a, b, § are real and 8 > 0. Obviously, a plays the role of £ and has the usual
meaning. But the new parameter b takes into account the fact that the potential in
(3) does not have a center of inversion (that is to say: the potential is not an even
function of the coordinate).

The transformation (4) leads to a new Hamiltonian H,,,

Hacﬂ — H(X(Z)) — %aZe — 2i9pz +q 72(%621'9 _ 3/1/6‘63{0) 22 _ 2/(1 — 3€3i023
+ a=(ce*® — 31 c?e) z + 1% — )/, (5)

where c= —b/a and ' =224,

The eigenvalues of H, , are obtained by expanding it in a truncated basis set of
normalized eigenfunctions {¢,} of Hy= p?+ z? and then solving the matrix eigen-
value equation

{Hacé?_ Wn(aa c, 9) I} Cn = 0’ (6)

where H,,, and I are N x N matrices corresponding to the Hamiltonian and to the
identity operator, respectively. C, is an N-dimensional row vector.

If the real parameters a and ¢ are properly chosen, the rate of convergence of the
eigenvalues W, as functions of the size N of the basis set increases. This has been
proved in the case of real scaling calculations [7]. The aforesaid conclusion also
holds when a complex scaling calculation is performed.

It only remains to obtain proper values for @ and c¢. The parameter 8 will be
determined according to the above-mentioned criterion [5, 6]. Since the exact
eigenvalues W, are not dependent on a and c, it is appropriate to choose those
values of a and ¢ that make W,(a, c, 8) stable. But this procedure leads to a large
amount of computation, a task to be avoided.

Acceptable values for a and ¢ are the stationary points of &,(a,c)=

(P 1 Hoo 100,
&a, c)=(n+1)a* +1a"*—3a" %)+ ic*— A (7)
that is to say, the roots of
a*—6ilc—1=0, (8a)
=3n+3a A +c-3Vc*=0. (8b)

If =0, then ¢ =0. This choice is reasonable since &,(a, c) equals W (a, ¢, 8) when
0=0and N=1 (N is the matrix dimension in (6)).
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The matrix elements in the expansion of H,., in the chosen basis set {¢4,} are
easily shown to be:

1 1 1 ; 1
(Haco)ij={<i+—2->a“2<2 4o *2'0+2e 3ilce319>+_2_626219 Vel 3;0} 5;,;

1 1 !
+ 5+ D)+2) " a (_ gate Mgt dele 3,9> Piv2s
. . . 1 3/2 .
+ {(l * 1) ~ce®® —3ci'e¥)—3 <%) a_3l'€3'9} O
)4 2014 3 12 ‘
. {(l+ )(l'; )(l+ )} 0732,63105,‘4_3,]" (9)

To solve the eigenvalue problem (6), we use a modified LR algorithm [8] after per-
forming a similarity reduction of H, , to a Hessenberg form [9]. All calculations
are performed using the values of ¢ and ¢ that result from (8) when n=0. This
choice assures the highest convergence rates for the low-lying resonances.

The energies and the widths of the resonances of the model (3) (with A=0.03)
are shown in Table I, where two different calculations are compared: (i) when a, b
are solutions of (8) and (ii) when ¢=0.8 and »=0, which correspond to the
calculation in Ref. [5] with £=0.4. In both cases #=0.2 is used. The introduction

TABLE I
Resonances in H = p2 + x*/4 — x> when A=0.03

N n Re W,° —Im w,° Re w,? —Im w,?
0 0.489196055 9.5%x10~7 0.489217619 1.8x10-°
1 1.422932675 7.6x10-3 1.423124774 3.0x10-3
10 2 2.251292943 L1x10-? 2.249105930 55x10-3
3 2.959113806 0.12 2.919107389 0.14
4 3.739108908 0.39 3.461815929 043
0 0.489194714 552x10-8 0.489194720 570x10-#
1 1.422922313 409 x 103 1422922404 408x10-3
20 2 2.250200574 743%x 1073 2.250203205 740x 103
3 2923853339 0.139 2923358810 0.139
4 3.619868351 0.462 3.616822098 0.468
0 0489194714 5.54x10"8 0.489194714 5.54x 108
1 1.422922458 409x10-° 0.422922457 409x10-3
30 2 2.250199666 741 x1073 2.250199673 741 x10-3
3 2923356344 0.139 2923359372 0.139
4 3.618976541 0.469 3.618942705 0.469

7a=0.9821258, ¢ =0.1367116, 6 =0.2.
ba=08,c=0 0=02
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of the parameter b that takes into account the potential symmetry improves the rate
of convergence markedly for both the real and imaginary part of the two lowest
resonances (see TableI). All the calculations show that the convergence rate
depends more strongly on ¢ rather than on a. This confirms the importance of the
parameter c.

The results obtained in this note using the simple (though nontrivial) one-dimen-
sional quantum-mechanical model (3) confirm that the introduction of adjustable
parameters that change the coordinate origin increases the convergence rates of the
eigenvalues of a finite-dimensional vector-space eigenvalue equation like (6) in
those cases where there is not a center of inversion. This conclusion applies to
many-dimensional models too, as suggested by real scaling calculations performed
earlier [7]. ‘
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